Introducing PyScriptures 0.3a

So I worked on my scripture program a bit more this past week. I've added a lot of the features I originally planned to implement. There are still some other things I plan to implement (such as the advanced search), but I think it's looking pretty good right now as far as features are concerned.

I do realize that there are some parts of the program that are still shabby. A lot of the code could be optimized quite a bit, and the code really needs more refactoring (though I did a considerable amount of that already).

This release would have happened a day or two ago, but my parents were in town and we were having a good old time together. I also ran into some problems that were only present on MacOS, so I had to track those down before I felt comfortable releasing a new version.

Anyway, it's here! Go ahead and download it from http://code.google.com/p/pyscriptures/

PyScriptures 0.2a Is Here!

So, for those of you who aren't in my immediate vicinity or who aren't on Google Talk all the time, this might well be your first exposure to my latest project. I'm calling it PyScriptures. Py because I wrote it all in Python. Scriptures because it is a program that provides the entire LDS standard works (as far as the actual scriptures are concerned, anyway).

Some History

(feel free to skip to the good stuff if you don't care about history, or skip to the downloads)

I have been working on this sort of program for a very long time. My first attempt was way back in probably 2001, using PHP. I wanted to have a way to easily read the scriptures on my computer without requiring an Internet connection. To go along with this, I wanted to be able to highlight text, mark verses, and easily navigate the scriptures. Obviously, I never quite got it right--that's why I'm still working on new versions all the time.

After a while, I learned that I would be getting a nifty Sharp Zaurus SL-5500 as a graduation present. It's a Linux-based PDA (one of the first, actually), and it's still pretty powerful considering that it's 6 years old now. Anyway, once I got that little gadget, I wanted to get the scriptures on there, too. I didn't have any of the MarkMyScriptures software that other PDA users enjoyed, because of the different operating system. Not to mention how cheap I am (I hate buying software). I ended up porting my PHP/MySQL version of the scriptures to my PDA and using it that way for a little while, but that proved to be very inefficient. The project went on hold for a while, during my time as a missionary in Romania.

When I returned home from my mission, I picked up the scriptures project again. I think my next stab was a Swing-based Java application. It worked well enough, but it never really got too far beyond, "Oh look! The scriptures!"

It was also during the time I was working on the Java version that I realized that the database I was relying upon for my scriptures was incomplete. I'm not sure what the extent of the missing information was, but I remember specifically looking up Doctrine & Covenants 77 only to find questions with no answers. The database was also not very "normalized" but that's more of a nerdy topic, so I will spare you the details. I attempted to contact the bloke in responsible for maintaining that database to let him know of the problems, but it seems like he died or something. Absolutely no response from him, and no activity on his website for two years.

After discovering the lack of complete scripture in that database, I made a promise to myself that I would make my own version of the database so I wouldn't have to stumble upon more incomplete or inaccurate scriptures. This became a reality early in May, as I wrote a program (in Python) that actually downloaded (I call it "harvesting") all of the scriptures directly from the Church's website. It took quite a bit of time to perfect, but as far as I can tell, it works great now. It puts all of the scriptures in a nice, normalized database. So far I know it works with SQLite and MySQL, but it should work just dandy with others as well.

Once I had that fresh database, I began working on a graphical interface for the scriptures. I had been tinkering with something called wxPython for a little while, but I'd never really built anything useful with it. I could never get used to laying things out after using the amazing GUI builder in NetBeans.

This past weekend I've been hacking nearly non-stop to get a nice, functional interface for my scripture program. I'm very satisfied with it, and I have to admit that it performs far better than any previous iteration of this project. There's still a lot to be done to make it work the way I want it to, but here's a brief list of features in this version 0.2a release:

Features Include:

  1. Cross-Platform Compatible: This program works exactly the same on Windows, Linux, and Mac. I've tested it on Windows XP, Vista, Ubuntu Linux, Slackware Linux, and MacOS X (leopard) and have only found minor differences that don't really matter anyway. The program itself does work though.
  2. Fast: Python does a good job at working quickly, even with my crummy code. It boasts incredible speed when retrieving and rendering the entire canon of scripture.
  3. Simple searching: You can type in a word, part of a word, or a whole phrase, and it will find any and all matches (case-insensitively) in the entire standard works.
  4. Quick Jump: Know the exact reference to the scripture you want? Type it in and you're immediately taken to that verse. I never understood why other programs don't have this feature. My implementation is not perfect, but it sure as heck didn't take much to get it where it is.
  5. Adjustable font sizes: You can easily adjust the size of the scripture text (within reasonable limits). That way you can make it easier to read if you're not sitting right in front of your computer.
  6. Easy navigation: You can quickly and easily jump to the next or previous chapter or book. I realize that this might not be very useful to a lot of people, but I love this sort of functionality.
  7. Random verse: Click one button to jump to some random verse anywhere in the scriptures. This is mostly a database deal, and it seems to prefer the Old Testament in my experience. Maybe that's just because the Old Testament probably has more verses than the rest of the volumes put together?
  8. Good memory: Prefer to have your window maximized? Don't like seeing the toolbar? The program will remember things like that, as well as the size and position of the window on your screen (if it's not maximized) and what verse you had selected immediately before closing down the program.
  9. Keyboard shortcuts: For those of us who hate to use mice, there are keyboard shortcuts to do most things in the program.

There's still more fun stuff to come, but I had to get something out the door. I spent most of today just trying to get the program to behave well on other platforms (mostly Windows), because I develop on Linux. If you're interested in trying out what I have now, feel free to download whatever suits you best:

Downloads

Windows Installer (32-bit) (9.0MB)

Debian Linux (including Ubuntu) (2.9MB)

Launch pyscriptures after installing and it should work.

MacOS X (11.3MB)

Man... Gotta love the size differences.

Requirements

This program requires Python 2.4+, pysqlite2 (or sqlite3 if you have Python 2.5), and wxPython 2.8+. These may be different, but that's what I used to develop with, so I know it works with them. The Windows installer should include everything you need to get started, as should the Mac installer.

Note: The .dmg is very, very shabby right now. I plan on making it prettier as time goes on, but this _is_ an alpha release, after all. You can't expect too much.

I should stop here. Enjoy!

Slackware 12.1 on an Asus EeePC 701

Attention!

This article has a follow-up for Slackware 12.2.

The following are the steps I took to install Slackware 12.1 on my EeePC this past weekend. I hope you find them complete and helpful!

Installing Slackware 12.1 on an Asus EeePC 701

  1. Burn DVD .iso to disc
  2. Turn on EeePC
  3. Hit F2 to run setup
  4. Go to the Advanced tab, and set "OS Installation" to "Start"
  5. Go to the Boot tab, and ensure that the external DVD drive will be used for booting before the internal SSD
  6. Exit and save changes
  7. Just hit enter after rebooting from BIOS configuration when the Slackware boot screen shows up
  8. Unless you want to use a different keymap for whatever reason, hit enter when asked to select a keyboard map
  9. Login as root
  10. Run fdisk or cfdisk on /dev/hdc
  11. Remove all partitions (unless you know what you're doing)
    1. fdisk: d to delete (you may have to select multiple partitions to delete if you have more than one for some reason)
    2. cfdisk: Select all partitions individually with up/down arrow keys and use the left/right arrow keys to select delete from the menu at the bottom. Hit enter to run the delete command when it's highlighted.
  12. Create one partition that takes the whole SSD (again, unless you know what you're doing)
    1. fdisk: n (for new); enter; p (for primary); enter; 1 (for the first primary partition); enter; enter (to start at the beginning of the drive); enter (to select the end of the drive)
    2. cfdisk: Select the new command with the left/right arrow keys and hit enter when it's selected. Make it a primary parition, and have it take the whole SSD (3997.49MB in my case).
  13. Set the type of the new partition to be Linux
    1. fdisk: t (for type); enter; 83 (for Linux); enter
    2. cfdisk: Use the left/right arrow keys to select the type command at the bottom and hit enter when it's selected. Choose 83.
  14. Set the new partition (or the first, if you decided to make more than one) to be bootable
    1. fdisk: a (for bootable); enter; 1 (for primary partition 1); enter
    2. cfdisk: Select the bootable command from the bottom using the left/right arrow keys. Hit enter when it's selected.
  15. Write the changes to the partition table and quit
    1. fdisk: w
    2. cfdisk: Use the left/right arrow keys to select the write command from the bottom. Hit enter when it's selected. Type 'yes' to verify your intent, acknowledging that your previous data will be "gone". Then select the quit command.
  16. Run setup
  17. Select TARGET to specify where you will be installing
  18. Select /dev/hdc1
  19. Format the partition
  20. To reduce write cycles, many people suggest formatting with ext2, which is a non-journaling filesystem. However, many people claim that the limited number write cycles of SSD is not something to worry about. Use your best judgement on this one. Hit OK after the format is complete.
  21. Select where you plan to install Slackware from. In my case, it's the DVD. I usually tell it to find the media automatically. Select manual if you know which device your DVD drive is. Mine was /dev/sr0.
  22. Select the packages you wish to install. This is where your installation will likely differ greatly from mine because of personal preferences. I do a lot of development, so I will keep a lot of things for that. Here's what I selected to install:
    1. Base Linux System
    2. Various Applications that do not need X
    3. Program Development (C, C++, Lisp, Perl, etc.)
    4. Linux kernel source
    5. Qt and the K Desktop Environment for X
    6. System Libraries (needed by KDE, GNOME, X, and more)
    7. Networking (TCP/IP, UUCP, Mail, News)
    8. Tcl/Tk script languages
    9. X Window System
    10. X Applications
    11. Games
  23. Choose whether or not you want to be picky about your software. To save a little extra disk space, I'm going to manually choose what I don't want. This includes:
    1. A: cpio, cryptsetup, cups, floppy, genpower, jfsutils, mdadm, mt-st, mtx, quota, reiserfsprogs, rpm2tgz, tcsh, xfsprogs
    2. AP: amp, cdparanoia, hplip, gutenprint, jed, joe, jove, ksh93, mysql, rpm, xfsdump, zsh
    3. D: gcc-gfortran, gcc-gnat, gcc-java, mercurial, p2c
    4. N: elm, epic4, httpd, mailx, mutt, netatalk, pine, popa3d, proftpd, rp-pppoe, samba, slrn, tin, trn, vsftpd
    5. TCL: hfsutils
    6. X: anthy, bdftopcf, beforelight, libhangul, sazanami-fonts-ttf, sinhala_lklug-font-ttf, tibmachuni-font-ttf, wqy-zenhei-font-ttf
    7. XAP: audacious, audacious-plugins, gftp, mozilla-thunderbird, pan, seamonkey
  24. Wait for the installation to complete. It took almost a full hour with my package selection, leaving me with 485.4MB free on my 4GB SSD.
  25. Choose whether or not you want to make a bootable USB... I skipped it.
  26. Choose how you wish to install LILO. I chose simple.
  27. Choose your frame buffer mode for the console. I chose 640x480x256.
  28. Specify any optional kernal parameters. I left this blank, originally, but later learned that having 'hdc=noprobe' increased my disk access speed by about 13 times.
  29. Specify whether you wish to use UTF-8 on the console. I chose no.
  30. Specify where to install LILO. I chose MBR.
  31. Specify your mouse type. I chose imps2.
  32. Specify whether or not you wish to have gpm run at boot, which allows you to use your mouse in the console. I chose yes.
  33. Configure your network.
  34. Give your eeepc a hostname. This can be whatever you'd like.
  35. Specify the domain for your network. This can be whatever you'd like as well.
  36. Configure your IP address information. I just chose DHCP.
  37. Set the DHCP hostname. I left this blank.
  38. Review and confirm your network settings.
  39. Choose which services you wish to have running immediately after booting.
  40. See if you want to try custom screen fonts. I usually don't bother.
  41. Specify whether your hardware clock is set to local time or UTC.
  42. Choose your timezone.
  43. Select your preferred window manager. I chose KDE.
  44. Set the root password.
  45. Slackware has been installed! Exit the setup program and reboot.
  46. Hit F2 to enter the BIOS again.
  47. Set OS Installation to "Finished" and exit the BIOS, saving changes.
  48. Reboot into Slackware! The first boot takes a while because of all the initial setup. It is faster on subsequent reboots, assuming you don't add new services (like apache and mysql) at boot.

Change a few settings around.

  1. vi /etc/inittab
  2. (set default runlevel to 4)
  3. vi /etc/lilo.conf
  4. add 'compact' somewhere to make it boot faster
  5. change the boot delay so it's not 120 seconds

Now for installing various drivers.

  1. Install the ethernet driver: http://people.redhat.com/csnook/atl2/atl2-2.0.4.tar.bz2
    1. wget http://people.redhat.com/csnook/atl2/atl2-2.0.4.tar.bz2
    2. tar jxf atl2-2.0.4.tar.bz2
    3. cd atl2-2.0.4
    4. make
    5. cp atl2.ko /lib/modules/2.6.24.5-smp/kernel/drivers/net/
    6. depmod -a
    7. modprobe atl2
    8. ifconfig
  2. Install the drivers for the wireless: http://snapshots.madwifi.org/special/madwifi-nr-r3366+ar5007.tar.gz
    1. wget http://snapshots.madwifi.org/special/madwifi-nr-r3366+ar5007.tar.gz
    2. tar zxvf madwifi-nr-r3366+ar5007.tar.gz
    3. cd madwifi-nr-r3366+ar5007.tar.gz
    4. scripts/madwifi-unload
    5. scripts/find-madwifi-modules.sh uname -r
    6. make && make install
    7. modprobe ath_pci

I kind of stopped taking notes after I realized how much fun it was to have Slackware on my EeePC. If you have questions, just add a comment below.

SwiftFox Debian Repositories

Since Debian is a distribution of Linux that tries to stay as "free" as possible, some of the software it is released with is not exactly useful all the time. Case in point: a site I recently visited complained that I didn't have an acceptable web browser. It said that I could use Firefox, but Debian packages "Iceweasel" instead of Firefox. They are basically the same program, only with different names (as far as I'm concerned). However, there is another program called "SwiftFox," which is a custom build of Firefox that is optimized for various CPU's. This browser is still accepted as Firefox, so this article will explain how to set your Debian system up to be capable of automatically installing and updating SwiftFox.

  1. The SwiftFox website does not currently offer a keyring, so you don't have to worry about that right now. Skipping this step will often give you warnings or error messages when you go to update your repositories or install something from the untrusted repository.

  2. Install the repositories using the following line:

    deb http://getswiftfox.com/builds/debian unstable non-free

    This line typically goes in the /etc/apt/sources.list file. Just put it on its own line. Some newer Debian systems prefer that you put this line in /etc/apt/sources.list.d/[repository].list (where [repository] would likely be swiftfox in this case).

  3. Run apt-get update as root to make sure the repositories are working properly. If they are, you should see no errors or warnings pertaining to swiftfox.com. If you see any such messages, try updating again.

  4. Install SwiftFox Since the builds are all optimized for various processors, check this list and this other list to figure out which package you should install. Since I'm running a 32-bit operating system on a Turion 64, I would run the following command as root:

    apt-get install swiftfox-athlon64-32bit

    You'll likely have to explicitly say "yes" when it asks if you really want to install the package.

Once that completes, you should be able to launch SwiftFox without a hitch!

Opera Debian Repositories

Being a web developer, I have an obligation to ensure that the sites I build work on the wides range of popular web browsers as possible. Because of this, I often find myself installing the wonderful Opera web browser on my Linux systems. Now, I could just download it directly from http://www.opera.com/ each time there's an upgrade, but it is much easier to handle when running a Debian-based distribution thanks to the apt-get infrastructure. This article will explain how to set your Debian system up to be capable of automatically updating Opera any time there is a new release.

  1. Install the keyring. A keyring is simply a way to verify the identity of the repository. It kinda makes sure that you are installing from the server you want to be installing from, instead of a different server that has unauthorized packages. To install the keyring, run the following command as root (or with root privileges using sudo):

    wget -O - http://deb.opera.com/archive.key | apt-key add -

    Note: Copying and pasting the above command does not seem to play well. The dash immediately before the http://... is translated improperly on this webpage. It should just be a regular dash.

  2. Install the repositories. This part usually depends upon your particular flavor of Debian. I am running Debian Sid, so I install the Opera repository using the following line:

    deb http://deb.opera.com/opera/ sid non-free

    or if I am feeling brave, I can install the "unstable" testing version of opera with

    deb http://deb.opera.com/opera-beta/ sid non-free

    If you are running Debian “etch”, you would change sid to etch and likewise for other flavors of Debian. This line typically goes in the /etc/apt/sources.list file. Just put it on its own line. Some newer Debian systems prefer that you put this line in /etc/apt/sources.list.d/[repository].list (where [repository] would likely be opera in this case).

  3. Run apt-get update as root to make sure the repositories are working properly. If they are, you should see no errors or warnings pertaining to opera.com. If you see any such messages, try updating again.

  4. Install Opera. Run the following command as root:

    apt-get install opera

Once that completes, you should be able to launch Opera without a hitch!

Debian Multimedia Repositories

For those who enjoy watching movies and listening to various audio files in Debian-based Linux distributions, there is an awesome project out there called Debian Multimedia. It offers many codecs and other useful applications and libraries that are required to work with a lot of different multimedia formats. This is how you may setup your computer to use Debian Multimedia as a repository. This allows you to quickly and easily install the things you need to get up and running.

Note: Some of these packages contain things that are protected by copyright, and you need to be aware of the laws and implications of installing them on your system wherever you may live. It may or may not be against the law.

  1. Download the keyring from http://www.debian-multimedia.org/pool/main/d/debian-multimedia-keyring/debian-multimedia-keyring_2007.02.14_all.deb. The keyring is simply a package that includes an authorization key to ensure the server is who it says it is.

  2. Install the keyring. Downloading the keyring is not enough. Now you have to tell your system to use it. One way of doing that is to run the following command as root (or with root privileges) in the directory where you downloaded the keyring:

    dpkg -i debian-multimedia-keyring_2007.02.14_all.deb

    This will copy the keyring to the appropriate place on your computer so apt-get won't complain when it tries to access debian-multimedia.org

  3. Install the repositories. This part usually depends upon your particular flavor of Debian. I am running Debian Sid, so I install the Debian Multimedia repository using the following line:

    deb http://www.debian-multimedia.org sid main

    If you are running Debian "etch", you would change sid to etch and likewise for other flavors of Debian. This line typically goes in the /etc/apt/sources.list file. Just put it on its own line. Some newer Debian systems prefer that you put this line in /etc/apt/sources.list.d/[repository].list (where [repository] would likely be debian-multimedia in this case).

  4. Run apt-get update as root to make sure the repositories are working properly. If they are, you should see no errors or warnings pertaining to debian-multimedia.org. If you see any such messages, try updating again.

And that should get you rolling! Good luck.

Why I Like Python

For the past 8 years or so, I've been very much involved with programming using the PHP scripting language. It is a powerful scripting language that suits building websites very well. PHP has a huge set of useful built-in functions, and more recent versions support object-oriented programming. I first started teaching myself PHP when I got tired of having to build each and every web page on my site manually. I hated having to change dozens of web pages just because I added a new link to my navigation. All sort of reasons like this prompted me to investigate PHP. Little did I know then that this language would occupy so much of my time in the future.

I rapidly learned that PHP offered much more than just allowing me to update one part of my website to change all pages. I started tinkering with all aspects of what PHP offered, and I'm still learning about it. After many years of searching, I finally found a programming language that was easy, fast, and efficient for my needs.

Through the years, I continued to develop various applications using PHP. I attempted to write my own forum/bulletin board software while I was still in high school. If I may say so myself, the forum really had some awesome concepts behind it. But my problem was that I lost interest too fast. I also built a very large application that reduced a 1.2GB MS Access database down to less than 15MB using PHP and MySQL. The new application offered many enhancements over the previous system. For one thing, it was much faster. Second, it allowed multiple simultaneous users to modify the database. Three, so far it has lasted more than 3 years, compared to the 1 year maximum that the MS Access solution always seemed to hit before it crashed.

Using PHP, I helped revolutionize the way one of the companies I work for developed websites. I built a simple in-house web framework that supposedly reduced development time by allowing us to forget about the mundane details involved in virtually every website and just get to the developing. In a matter of two weeks (with a full class load and another job), I managed to write an e-commerce solution for the same company using PHP.

Basically, PHP has treated me well over the years. But this post is not supposed to be about PHP. If that's the case, why have I rambled about PHP this whole time, you ask? Well, it's mostly to demonstrate that I have a lot of experience with the language. I have a pretty good feel for what it's capable of and how I can accomplish most anything I need.

With all of that in mind, I've encountered my frustrations with PHP. They may seem petty and moot to most people, but they have turned out to be the determining factor in what scripting language I prefer. Here is a short list of things I now despise about PHP:

  • dollar signs ($) to signify variables -- while this is a useful feature, it becomes quite bothersome when you're programming all day long (at least it does for me). I'll get to why later.
  • using an actual arrow (->) to access attributes -- most other modern programming languages simply use a period (.) for this functionality. I'll comment more on this and why it frustrates me later as well.
  • lack of true object-oriented constructs -- in other object-oriented languages, like Java, if you have a string and you want to determine its length, you call the length() method of that string. In PHP, you call a function such as strlen($var). This sort of behavior plagues the language.
  • too many unnecessary keystrokes -- as I mentioned before, all mutable variables are preceded by a dollar sign ($). That is 2 keystrokes (shift and 4) every time you want to refer to a variable, wheres most languages nowadays have none). Likewise, accessing attributes of objects in PHP uses an arrow (->), which is three keystrokes (minus, shift, and .). Most other object-oriented languages only require a period (one keystroke) for such functionality. The main reason I make such a big deal out of the number of keystrokes is simple. The more keystrokes a program requires, the more likely you are to have bugs. The fewer keystrokes a program requires, the less likely it is that your program will be broken. It boils down to maintainability. Also associated with the number of keystrokes is the pure laziness within me and most other programmers.

These frustrations have been bothering me for several years now. I continued using PHP mostly because it's so widely supported, but also because I could not find a suitable replacement for it. I investigated a few others, but they apparently didn't have a great influence on me right now because I don't remember any names.

When the whole Ruby on Rails bandwagon was rolling through town, I decided to hop on to see what all of the hubbub was about. I started studying the Ruby script language, and I found that it had some really neat things about it. It uses a more solid approach to object-oriented programming, which I really liked. I also noticed that it employs some intriguing structures for accomplishing things in ways I've never seen before. Despite these things, Ruby still didn't seem like a viable replacement for my PHP. It didn't come up to snuff in performance in many cases, so I essentially abandoned it.

For at least a year now, I've been interested in learning Python. I've heard a lot about it over the years, but I just never seemed to make the time to actually sit down and study it. That is, not until about the beginning of August of 2007. After I made my decision that Ruby and Ruby on Rails weren't quite up to par for my needs, I stumbled upon the Django Project, which is a web framework similar to Ruby on Rails, only built using Python.

I decided this was my chance to actually sit down and learn a little about this "Python" so I could see what it had to offer. I mostly used Django as my portal to Python. As I started learning Django, I became more and more familiar with the way Python works and how I work with Python.

At some point in time, I decided that I actually liked Python, and my wife let me buy some really cool books to help me learn it. By the beginning of October 2007, I had convinced my supervisor at work to let me start building websites using Django instead of our home-grown PHP framework.

And here comes a story. This is the main reason I blabbered about my experience with PHP so much at the start of this article. Again, after all these years, I feel very confident that I can do just about anything I want efficiently and elegantly with PHP.

Back in October of 2006 (after using PHP for some 7 years), I was asked to write a PHP script to parse some log files and output various bits of information in a certain format. After maybe a week, I had a script that did the job fairly well. Most of the time it worked, but there were occasions when it didn't and I had to fix it. The script turned out to be 365 lines of code with very few comments scattered throughout. It's also a maintenance nightmare, even for me.

In October of 2007, I rewrote that same script in Python. After only a couple days, the script seemed to be perfect. It did its job, and it did it well. With comments for just about every single line of code, the Python version of the script took up a mere 118 lines of code. Take out the comments and it is 56 lines of code. The script is several times more understandable and maintainable than its PHP counterpart. I also believe that it is much more efficient at doing its task. Keep in mind that I had only been using Python for about 2 months at this point in time.

It's been through various experiences like the log parser that I have decided I prefer Python over PHP. Obviously, I'm not quite as comfortable with it as I am with PHP, but I don't feel too far behind. Now, less than 6 months after deciding that we'd use Django at work, I don't think my supervisor could be happier. Building a typical website with our PHP framework takes between 1 week and a couple months. Thanks to Python and Django, most of our websites can be "ready" within just a few hours. That time assumes that the website's design itself is ready for content to be put into it and also that the client does not require custom-designed applications.

Python and Django have helped revolutionize the way we do things at work, and I can hardly stop thinking about it. Python fixes nearly all of the frustrations I had with PHP. The frustrations it doesn't take care of are worth the sacrifice. Python is capable of object-oriented programming. It uses a period (.) to access object attributes. Variables are not preceded by some arbitrary symbol.

Also, the fact that Python code can be compiled to bytecode (like Java) is enormously beneficial. Each and every time a PHP script is executed, the PHP interpreter must parse the code. With Python, the first time a script is executed after an edit, the program is compiled to bytecode and subsequent executions are faster. That is because the bytecode is processed directly by the Python Virtual Machine (as opposed to being compiled to bytecode _each_ time and then executed). Python also offers a vast amount of standard library functions that I would really appreciate having in PHP. But from now on (at least for the foreseeable future), I will try to do all of my scripting in Python and leave PHP for the special cases.

Perpetual Motion System May Become A Reality

Today I was browsing Slashdot and came across a story about a Canadian college drop-out named Thane Heins who has possibly unlocked the secret to perpetual motion systems. I don't fully understand everything about it, but it seems to be a pretty solid deal to me. He has demonstrated the device at several universities and it seems that most professionals in the industry are speechless afterwards. No one seems to be able to explain what is happening using conventional physics laws. Even Markus Zahn from MIT, the foremost expert in electromagnetic and electronic systems, has yet to come up with an explanation for what happens within the device.

Considering that this man is a college dropout, do you suppose that no college graduates who go on to study these things could make this breakthrough because educational programs lock you into long-accepted ideas instead of embracing "thinking outside the box?" Why couldn't Zahn or any other leading expert in the industry construct a perpetual motion device with all of their resources? Heins has reletively nothing in terms of resources in comparison to university programs.

That train of thought makes you think at least twice about enrolling in classes at a university (if you have the enthusiasm to do something on your own).

Anyway, the story is here and you can watch the first two parts of a seven-part video demonstration on YouTube.