openSUSE 11.0: Round 2

Ok, ok... I decided to give openSUSE 11.0 another shot. Since my last blog post, I have read some reviews posted by some other people who encountered similar problems when attempting to actually use KDE4. Some of these people opted to install the KDE 3.5.9 remix after that and had more promising result. So, instead of letting my bias get the best of me, I am going to try openSUSE 11.0 one more time using KDE3. The following are the steps I took while going through this process:

  1. Booted from DVD (openSUSE 11.0 x86_64)

  2. Chose "Installation" from the boot menu

  3. After the installer is completely loaded, I selected "English (US)" for both the language and the keyboard layout, read the license agreement, checked the "I Agree to the License Terms" box, and clicked Next.

  4. I waited for a few seconds while the installer probed my hardware and updated some package lists, then I chose "New Installation" and clicked Next.

  5. The next step was to choose my timezone. They have a very simple interface for this--much less frustrating than the counterpart in the most recent release of Ubuntu (8.04 LTS). My system clock is set to Mountain time, so I left that stuff alone and clicked Next.

  6. This step is probably where I screwed up the most last time. It's where you choose which desktop environment you want. You can choose from GNOME 2.22, KDE 4.0, KDE 3.5, and XFCE Deskop. Last time I chose KDE 4.0. This time I chose KDE 3.5 and clicked Next.

  7. After choosing the desktop environment, the installer took me to the disk partition section of the installation. This should be pretty easy for most people, but I changed a few things. Namely, I put the root and home partitions together, and I deleted one of my Windows partitions because Windows is stupid and bloated. Once I verified the disk partition settings, I clicked Next.

  8. This part is where you get to enter the primary system user's information. You can specify the user's name, login, and password. You may also specify a few options including whether or not the root user will have the same password, whether that user will receive system mail, and whether or not that user will be logged in automatically. If you need to, you may change the authentication settings here too. I just entered the information and got on with it. (If you uncheck the box for the root user having the same password, you're prompted for the root password after this screen)

  9. Finally, we get to the step where you get to verify all of the installation settings. I think I'll just go with the configuration for now. When you click Install, you're prompted to verify that you really want to install. Use your head on this one.

  10. After all of that, it began to format my partitions. One neat thing that I noticed while it was installing was the fact that they rolled commonly-installed packages into what they call "images." This seems to increase installation speed considerably. In the past, I've had most RPM-based distribution installations take as long as (or longer than) Windows takes to install. Granted, the difference there is that you actually get useful stuff once Linux is installed, whereas with Windows, you're stuck with something barely usable and you still have to install drivers for every piece of hardware except your monitor.

    Anyway... the openSUSE folks seem to have addressed that problem recently (maybe just in this release). This went a LOT faster than I've ever seen (on any computer). Despite the use of those images, though, there were still nearly 500 packages that needed to be installed. It seems to be quite evident that the packages are working faster than ever before. It's refreshing (though it did still take quite a bit longer to install than most Debian-based distributions I've tried).

  11. After all of the packages are installed, the system does some configuration and then reboots itself. When it comes back up, the installer will appear, do some more hardware detection and configuration, and then go straight into your desktop.

openSUSE actually didn't detect my 1680x1050 resolution (I didn't know any modern distribution wouldn't anymore), so I just went into YaST and set the resolution to what it should be. And then it locked up, and I had to do a hard reboot. Let's hope I can stop that from happening again. I suppose so long as I can still see things other than my mouse, I should be good.

Upon rebooting into my desktop, the resolution was still crappy. When I went to change it this time, though, I noticed that dual-head mode was enabled. That's stupid. I never plug a second monitor into my laptop. I disabled that, then tried to change the resolution. After logging out and back in, it seems to have changed the resolution properly. While I realize that I do have an extremely crappy video card, Ubuntu and others have been able to offer me 3D acceleration. This option is currently unavailable with openSUSE. Perhaps a little research will solve that problem.

After a few minutes of configuration and preference setting, my system locked up yet again. And another hard reset did the trick of getting it operational again. One more and it's outta here!! I do have to say... Minus the quirks with the resolution and drivers, the distribution does not seem bad at all. It might be worth trying out on a different computer--maybe I'd have better luck.

Alright, now I'm going to check the software management tool for a real driver for my video card. Looks like I may have found some. I hope they work. I'm using a "1-click installer" that I found from a Google search. The installation went fine, but after logging out and back in (to have the drivers take effect), it locked up again.

So, round two folks. Again, it might just be user error. It might just be my computer. Or openSUSE really might just suck. I don't think I'll be trying it on my computer again for a while. I might try on a different system altogether, but not on my main laptop.

Slackware 12.1 on an Asus EeePC 701

Attention!

This article has a follow-up for Slackware 12.2.

The following are the steps I took to install Slackware 12.1 on my EeePC this past weekend. I hope you find them complete and helpful!

Installing Slackware 12.1 on an Asus EeePC 701

  1. Burn DVD .iso to disc
  2. Turn on EeePC
  3. Hit F2 to run setup
  4. Go to the Advanced tab, and set "OS Installation" to "Start"
  5. Go to the Boot tab, and ensure that the external DVD drive will be used for booting before the internal SSD
  6. Exit and save changes
  7. Just hit enter after rebooting from BIOS configuration when the Slackware boot screen shows up
  8. Unless you want to use a different keymap for whatever reason, hit enter when asked to select a keyboard map
  9. Login as root
  10. Run fdisk or cfdisk on /dev/hdc
  11. Remove all partitions (unless you know what you're doing)
    1. fdisk: d to delete (you may have to select multiple partitions to delete if you have more than one for some reason)
    2. cfdisk: Select all partitions individually with up/down arrow keys and use the left/right arrow keys to select delete from the menu at the bottom. Hit enter to run the delete command when it's highlighted.
  12. Create one partition that takes the whole SSD (again, unless you know what you're doing)
    1. fdisk: n (for new); enter; p (for primary); enter; 1 (for the first primary partition); enter; enter (to start at the beginning of the drive); enter (to select the end of the drive)
    2. cfdisk: Select the new command with the left/right arrow keys and hit enter when it's selected. Make it a primary parition, and have it take the whole SSD (3997.49MB in my case).
  13. Set the type of the new partition to be Linux
    1. fdisk: t (for type); enter; 83 (for Linux); enter
    2. cfdisk: Use the left/right arrow keys to select the type command at the bottom and hit enter when it's selected. Choose 83.
  14. Set the new partition (or the first, if you decided to make more than one) to be bootable
    1. fdisk: a (for bootable); enter; 1 (for primary partition 1); enter
    2. cfdisk: Select the bootable command from the bottom using the left/right arrow keys. Hit enter when it's selected.
  15. Write the changes to the partition table and quit
    1. fdisk: w
    2. cfdisk: Use the left/right arrow keys to select the write command from the bottom. Hit enter when it's selected. Type 'yes' to verify your intent, acknowledging that your previous data will be "gone". Then select the quit command.
  16. Run setup
  17. Select TARGET to specify where you will be installing
  18. Select /dev/hdc1
  19. Format the partition
  20. To reduce write cycles, many people suggest formatting with ext2, which is a non-journaling filesystem. However, many people claim that the limited number write cycles of SSD is not something to worry about. Use your best judgement on this one. Hit OK after the format is complete.
  21. Select where you plan to install Slackware from. In my case, it's the DVD. I usually tell it to find the media automatically. Select manual if you know which device your DVD drive is. Mine was /dev/sr0.
  22. Select the packages you wish to install. This is where your installation will likely differ greatly from mine because of personal preferences. I do a lot of development, so I will keep a lot of things for that. Here's what I selected to install:
    1. Base Linux System
    2. Various Applications that do not need X
    3. Program Development (C, C++, Lisp, Perl, etc.)
    4. Linux kernel source
    5. Qt and the K Desktop Environment for X
    6. System Libraries (needed by KDE, GNOME, X, and more)
    7. Networking (TCP/IP, UUCP, Mail, News)
    8. Tcl/Tk script languages
    9. X Window System
    10. X Applications
    11. Games
  23. Choose whether or not you want to be picky about your software. To save a little extra disk space, I'm going to manually choose what I don't want. This includes:
    1. A: cpio, cryptsetup, cups, floppy, genpower, jfsutils, mdadm, mt-st, mtx, quota, reiserfsprogs, rpm2tgz, tcsh, xfsprogs
    2. AP: amp, cdparanoia, hplip, gutenprint, jed, joe, jove, ksh93, mysql, rpm, xfsdump, zsh
    3. D: gcc-gfortran, gcc-gnat, gcc-java, mercurial, p2c
    4. N: elm, epic4, httpd, mailx, mutt, netatalk, pine, popa3d, proftpd, rp-pppoe, samba, slrn, tin, trn, vsftpd
    5. TCL: hfsutils
    6. X: anthy, bdftopcf, beforelight, libhangul, sazanami-fonts-ttf, sinhala_lklug-font-ttf, tibmachuni-font-ttf, wqy-zenhei-font-ttf
    7. XAP: audacious, audacious-plugins, gftp, mozilla-thunderbird, pan, seamonkey
  24. Wait for the installation to complete. It took almost a full hour with my package selection, leaving me with 485.4MB free on my 4GB SSD.
  25. Choose whether or not you want to make a bootable USB... I skipped it.
  26. Choose how you wish to install LILO. I chose simple.
  27. Choose your frame buffer mode for the console. I chose 640x480x256.
  28. Specify any optional kernal parameters. I left this blank, originally, but later learned that having 'hdc=noprobe' increased my disk access speed by about 13 times.
  29. Specify whether you wish to use UTF-8 on the console. I chose no.
  30. Specify where to install LILO. I chose MBR.
  31. Specify your mouse type. I chose imps2.
  32. Specify whether or not you wish to have gpm run at boot, which allows you to use your mouse in the console. I chose yes.
  33. Configure your network.
  34. Give your eeepc a hostname. This can be whatever you'd like.
  35. Specify the domain for your network. This can be whatever you'd like as well.
  36. Configure your IP address information. I just chose DHCP.
  37. Set the DHCP hostname. I left this blank.
  38. Review and confirm your network settings.
  39. Choose which services you wish to have running immediately after booting.
  40. See if you want to try custom screen fonts. I usually don't bother.
  41. Specify whether your hardware clock is set to local time or UTC.
  42. Choose your timezone.
  43. Select your preferred window manager. I chose KDE.
  44. Set the root password.
  45. Slackware has been installed! Exit the setup program and reboot.
  46. Hit F2 to enter the BIOS again.
  47. Set OS Installation to "Finished" and exit the BIOS, saving changes.
  48. Reboot into Slackware! The first boot takes a while because of all the initial setup. It is faster on subsequent reboots, assuming you don't add new services (like apache and mysql) at boot.

Change a few settings around.

  1. vi /etc/inittab
  2. (set default runlevel to 4)
  3. vi /etc/lilo.conf
  4. add 'compact' somewhere to make it boot faster
  5. change the boot delay so it's not 120 seconds

Now for installing various drivers.

  1. Install the ethernet driver: http://people.redhat.com/csnook/atl2/atl2-2.0.4.tar.bz2
    1. wget http://people.redhat.com/csnook/atl2/atl2-2.0.4.tar.bz2
    2. tar jxf atl2-2.0.4.tar.bz2
    3. cd atl2-2.0.4
    4. make
    5. cp atl2.ko /lib/modules/2.6.24.5-smp/kernel/drivers/net/
    6. depmod -a
    7. modprobe atl2
    8. ifconfig
  2. Install the drivers for the wireless: http://snapshots.madwifi.org/special/madwifi-nr-r3366+ar5007.tar.gz
    1. wget http://snapshots.madwifi.org/special/madwifi-nr-r3366+ar5007.tar.gz
    2. tar zxvf madwifi-nr-r3366+ar5007.tar.gz
    3. cd madwifi-nr-r3366+ar5007.tar.gz
    4. scripts/madwifi-unload
    5. scripts/find-madwifi-modules.sh uname -r
    6. make && make install
    7. modprobe ath_pci

I kind of stopped taking notes after I realized how much fun it was to have Slackware on my EeePC. If you have questions, just add a comment below.

Linux Basics

Filesystem

  • /bin - This is where basic Linux commands reside (ls, du, dd, cp, etc).
  • /boot - Your boot images are stored here.
  • /dev - Links to access your machine's devices.
  • /etc - Configuration files and boot scripts.
  • /home - User directories, equivalent to "Documents and Settings" in Windows XP.
  • /lib - System libraries, codecs, etc.. similar to Windows/System and Windows/System32.
  • /mnt, /media - Mount points. A mount point is a directory that the contents of your hard drives, cd/dvd drives, floppy drives, or jump drives will be accessible.
  • /opt - Optional packages and programs. Could be thought of as a "Program Files" directory.
  • /proc - Special dynamic information about your system.
  • /root - System administrator home. Could be thought of as a "Documents and Settings/Administrator" directory.
  • /sbin - Super-user binaries. These programs need super-user (root) privileges to execute.
  • /tmp - Temporary files. Every user usually has read, write, and execute permissions here.
  • /usr - The main place for programs to be installed. Most like "Program Files" in Windows.
  • /var - System logs, mail spools, default web server directory, databases, etc...

Basic Commands

  • cd - Change Directory: moves to a different directory.

    Usage: cd directory, cd .., cd /directory

  • cp - CoPy: Copy a file or directory. If you wish to copy recursively and retain all attributes associated with the file or directory, use the -a option.

    Usage: cp original original.backup, cp -a /home/user/directory /home/user/backup

  • df - Disk usage on Filesystem: Display an overall summary of disk usage on mounted mountpoints. If you want human-readable sizes, use the -h option.

    Usage: df, df -h, df /mnt/mountpoint

  • du - Disk Usage: Display the disk usage of each file (recursively, by default) in the current directory. If you want human-readable sizes (1024 bytes = 1Kb, 1024Kb = 1Mb, etc), use the -h option. If you want a summary of the total disk usage by a directory and everything inside, use the -s option.

    Usage: du, du -s, du -h, du -sh, du -s /directory

  • ln - LiNk: Create a link, or shortcut, to a file or directory. I prefer to do symlinks by using the -s option.

    Usage: ln original link, ln original /directory, ln original /directory/link, ln -s original /directory/link

  • ls - LiSt: lists the contents of a directory.

    Usage: ls, ls .., ls /directory/subdirectory

  • man - View the MANual page for a program or other file. Probably the most useful program ever.

    Usage: man program, man xorg.conf

  • mkdir - MaKe DIRectory: create a new directory/folder.

    Usage: mkdir dirname, mkdir /directory/newdirname

  • mv - MoVe: Move a file or directory to a new location, or rename a file or directory.

    Usage: mv file /directory/newhome, mv file newfilename

  • pwd - Print Working Directory: returns the full path of the directory in which you are working.

    Usage: pwd

  • rm - ReMove: Remove a file or directory. If you want to get rid of a directory and all of its contents, use rm -R or rm -Rf for recursive deletion.

    Usage: rm filename, rm /directory/filename, rm -Rf /directory/dirname

  • rmdir - ReMove DIRectory: remove a directory. The directory must be empty.

    Usage: rmdir dirname, rmdir /directory/dirname

  • whereis - Determine where a certain file exists (if it's in your path)

    Usage: whereis filename

  • whoami - Detemine which user you are currently logged in as

    Usage: whoami

Linux Permissions

Linux has a great permission scheme. Since its inception, three basic levels of security have existed: user, group, and everyone. A simple way to change the permissions on a file or directory is to use the chmod, or CHange MODe, command. Changes to the permissions can be either a symbolic representation or an octal number representing the bit pattern for the new permissions. I prefer the symbolic method, myself, but many others prefer to see the octal pattern.

When working with permissions in Linux, always remember the following orders: User, Group, All; Read, Write, Execute. Those are the orders you will put the permissions in. Let's say that we want to make a file readable and writable only to the owner, while no one else will even be able to read the file. Here are some examples:

NOTE: Commands that begin with $ are executed as a regular user. Commands that begin with # are executed by a superuser (root). These two symbols (when they are the very first character in the command) are not entered by the user.

Symbolic:

$ echo "Hi" >> testing
$ chmod a-rwx,u+rw testing

Octal:

$ echo "Hi" >> testing
$ chmod 600 testing

Let's now examine the commands individually.

$ echo "Hi" >> testing

This command will append "Hi" (without the quotes) to the end of the file called testing. The file will be created if it does not already exist, assuming that the user has write permissions in the current directory. If you didn't want to append, you could overwrite anything that may be in the file by using a single > rather than >>.

$ chmod a-rwx,u+rw testing

This command removes (the - in a-rwx) read (the r in a-rwx), write (the w in a-rwx), and execute (the x in a-rwx) permissions from all (the a in a-rwx) users on the file called testing. Next we add (the + in u+rw) permissions for the owner (the u in u+rw) of the file: read (the r in u+rw) and write (the w in u+rw) on the file called testing.

$ chmod 600 testing

This command sets the permissions for everyone in one shot. I think of the digits in binary:

  • 1 = execute only;
  • 2 = write only;
  • 3 = write and execute, but no read;
  • 4 = read, but no write or execute;
  • 5 = read and execute, but no write;
  • 6 = read and write, but no execute;
  • 7 = read, write, and execute.

A digit is required for each level of permissions (user, group, and all). It is also possible to put another digit before the 3 levels of permissions, but to be honest, I don't know what significance it has. A little bit of testing has shown that it puts either an S or T in place of the execute permissions (depending on the digit).

A couple more things about chmod: Directories must also be executable in order to list the contents. chmod is very powerful. Finally, you can recursively apply permissions to directories and everything underneath with the -R option.

$ chmod -R a+rx /home/user/share

A couple of commands closely associated with chmod are chgrp (CHange GRouP) and chown (CHange OWNer).

chown will change the user ownership of files or directories. This can be done recursively with the -R option. It also has the capability to change the group ownership built into it. The syntax is: chown [options] user[:group] file1 [file...]

chgrp will change the group ownership of files or directories. You can do this recursively with the -R option. The syntax is: chgrp [options] groupname file1 [file...]

Cronjobs

Cronjobs are similar to scheduled tasks in the Windows world. Schedule tasks or cronjobs are simply programs that you want to run regularly, without having to type in the command every time you want it to run. Most distributions come with a cron daemon of some sort installed by default. Generally speaking, you can edit your cronjobs by typing crontab -e. This will bring up an editor like vi (it usually is vi by default) in which you edit your cronjob file. Each user can have their own cronjobs (unless it's been disabled by the administrator, I would assume). Here is an example of a cronjob entry:

47 * * * * /usr/bin/run-parts /etc/cron.hourly 1> /dev/null

You'll notice the 47 with four *'s after it. This is how the daemon knows when to execute a job. This is what each of the stars represent in their order:

  1. Minute: 0-59
  2. Hour: 0-23 (0 = midnight)
  3. Day of month: 1-31
  4. Month: 1-12
  5. Day of week: 0-6 (0 = Sunday)

So the example above will run after 47 minutes every hour of every day of the month of every month. You can also do some fancy things like having a job run every 5 minutes, after 15 and 45 minutes, etc. Let's say that we want to grab our mail every 5 minutes. The cronjob entry would look something like:

*/5 * * * * /usr/bin/fetchmail

If we wanted to grab our mail every 2 hours but only on Mondays, we would use the following:

0 */2 * * 1 /usr/bin/fetchmail

To have a job run after 15 and 45 minutes, we could do this:

15,45 * * * * /usr/bin/fetchmail

Pretty nifty, eh?

Make

This fancy utility is usually the means used for compiling programs from source. The usual sequence of commands for compiling and installing a program from the source in Linux is as follows:

$ ./configure
$ make
# make install

Most packages will follow this convention, but some require special procedures. Sometimes you can even get away with skipping the make and jump straight from ./configure to make install. It is always a good idea to read the README and INSTALL files included in source packages. They will generally tell you about anything out of the ordinary when compiling the source. Obviously, there is a lot more to this utility, but I'm not the person to explain it to you.

Package Management

There are several different types of package managers. The most popular these days are .rpm (RedHat Package Manager) and .deb (Debian). There are some other kinds of packages, but they aren't as popular as RPM and DEB. Slackware uses a straight .tgz (gzipped tarball) as its package system. Frugalware uses .fpm, which are bzipped tarballs. In the end, packages are almost always gzipped or bzipped tarballs.

Each package system has its ups and downs. I've personally found RPM-based distributions to be overly slow, especially with the package management. DEB-based distributions seem to be a lot more speedy when put up against RPM-based distros. However, I have found Slackware's TGZ-based system the most efficient and the fastest. Both RPM's and DEB's have dependency checking. In other words, the package manager will attempt to locate all entities upon which a program may depend in order to function properly before installing or upgrading that program.

A lot of people claim that .tgz packages are inferior to RPM and DEB because of the lack of dependency checking. By default, Slackware does not have dependency checking, but if you know what you're doing, you can get your dependencies a lot easier than you can with RPM or DEB (in my opinion).

RPM packages usually seem quite large compared to other package systems like DEB and TGZ. As far as I have seen, TGZ packages are smaller than both RPM and DEB packages. Here are a few options to help you use the RPM and TGZ package managers. I am not sure on Debian packages, so I won't attempt that one:

  • RPM:
    • rpm -q or rpm --query: look for a package on your system
    • rpm -i or rpm --install: install a new package on your system
    • rpm -U or rpm --upgrade: upgrade a package which is already installed on your system
    • rpm -e or rpm --erase: remove a package from your system
  • TGZ:
    • pkgtool: a text-based package manager
    • installpkg: install a package onto your system
    • upgradepkg: upgrade a package which is currently installed on your system
    • removepkg: remove a package from your system

You can also get some other programs that are VERY useful for package management. I think the latest craze for RPM's is YUM. I have not had great luck with this utility, but a lot of people really like it. Debian packages have used apt-get for ages now. My favorite add-on for Slackware packages is called swaret. Other distributions use the pacman utility, which is very efficient. Each one of these applications has several options and operation procedures.

Secure Shell and Secure Copy

One of my favorite aspects of Linux and other UNIX-derived systems is their secure shell capability (which is usually installed by default). Secure shell, or SSH, is a way for users to log into a remote computer and work on the remote computer as though it were right in front of them. Granted, it's all text-based unless you have X11 forwarding setup properly on both machines. But the command line interface (CLI) is extremely powerful--you should not be afraid to learn and use it. If you need to SSH from a Windows machine, you can use PuTTY.

In order to ssh into another computer, you simply type:

$ ssh hostname

or use the computer's IP address:

$ ssh xxx.xxx.xxx.xxx

By default, ssh on Linux machines will use the username of the account that you are running ssh from. Sometimes you need to login as a different user than the one you're currently using. To do that, you use the -l (lowercase L) or make it look like an e-mail address:

$ ssh hostname -l differentuser
$ ssh differentuser@hostname

Once your ssh session begins with the remote host, you will be asked to enter the password associated with the account with which you are attempting to login. If you do a lot of ssh'ing between machines, typing in your password several times is not only annoying but it could also pose a security risk--some wandering eyes might be watching you each time you enter your password. A great way to get around this is to generate a public and private key for your account. Once you do this, you can use the private key file on the machine you're ssh'ing out of and the public key on the remote machine.

To generate a public/private key, you can use ssh-keygen:

$ ssh-keygen -t rsa

You will be asked to enter and verify a passphrase for your private key. If you were aiming to get around not typing in your password, just hit enter twice for this part. It's still not secure, but it is a lot less hassle if you're only working on machines that no one else has "access" to. Usually your keys will be stored in ~/.ssh/ (or your /home/username/.ssh/ directory: ~ refers to your /home/yourusername).

The next step is to create your identification:

$ cd ~/.ssh
$ echo "IdKey private_key_file" > identification

Now you have to copy your public key (usually the one that ends in .pub) to the remote host:

$ scp public_key_file.pub username@xxx.xxx.xxx.xxx:/home/username/.ssh

And finally you should add your public key to the list of authorized users on the remote host by adding a line like the following to the ~/.ssh/authorization file:

Key public_key_file.pub

At this point you should be able to log into your remote host without your password (assuming you skipped the passphrase part of the key generation above).

As for the secure copy utility, you can get an idea of how to use it from the scp command above. This program uses the SSH system to securely copy files between two computers. This is how I use the scp command:

$ scp [-r] user@remote:/path/to/remote/file /local/destination/path/
$ scp [-r] /path/to/local/file user@remote:/remote/destination/path/

If you have setup public key authorization, you will not have to enter your password each time you use scp. Otherwise, you are asked for a password each time you run scp.

Archiving and Backup

There are many different kinds of compression and archiving tools in Linux. The most common types are tarballs, gzipped, and bzipped files. Below is a list of purposes for each of the three and some of the options:

  • tar - multiple files, little or no compression
    • c, --create - create a tarball
    • f, --file - specify the tarball's filename
    • x, --extract, --get - extract the contents of a tarball
    • j, --bzip2 - use bzip2 compression/decompression
    • v, --verbose - show verbose output
    • z, --gzip, --ungzip - use gzip compression/decompression
    • to create a tarball called filename.tar which contains all of the files in /dir/to/archive: $ tar cf filename.tar /dir/to/archive
    • to create a tarball called filename.tar.gz which contains all of the files in /dir/to/archive and gzip it: $ tar zcf filename.tar.gz /dir/to/archive
    • to create a tarball called filename.tar.bz2 which contains all of the files in /dir/to/archive and bzip it: $ tar jcf filename.tar.bz2 /dir/to/archive
    • to extract the contents of a tarball called filename.tar.gz to the current directory: $ tar zxf filename.tar.gz
    • to extract the contents of a tarball called filename.tar.bz2 to the current directory: $ tar jxf filename.tar.bz2
  • gzip - single file compression
    • To gzip a file called filename to make it filename.gz: $ gzip filename
    • To gunzip a file called filename.gz to make it filename: $ gunzip filename.gz
  • bzip2 - single file compression
    • To bzip a file called filename to make it filename.bz2: $ bzip2 filename
    • To bunzip a file called filename.bz2 to make it filename: $ bunzip2 filename.bz2

Installing SuSE Linux Enterprise Desktop 10

This will be the second time for me putting SLED 10 on my laptop, but I've also put SLES 10, SuSE Linux 10.1, and various others on this laptop several times before. It _has_ been a few months since I last installed Linux on this laptop, so we'll see how well I remember how to do it. I will be installing the 64-bit DVD version, so as to take better advantage of the 64-bit capabilities of my processor. This shouldn't have a drastic effect on the overall procedure, compared to that of installing the 32-bit CD/DVD version.

Here are some specs of my laptop:

  • Make/Model: HP Pavilion dv8000
  • CPU: AMD Turion 64 ML-40 (2.2Ghz)
  • RAM: 1.25GB PC2700 DDR333 SODIMM
  • HDD: 5400RPM 80GB
  • Video: ATI Radeon Xpress 200M (128MB dedicated RAM, up to an additional 128MB shared RAM)

Note: I make a few assumptions in the writing of this article. One is that you are on a machine running Windows XP. If your computer can't handle Windows XP, you probably don't want to be running SLED 10. Another assumption is that you don't yet have your hard drive partitioned into more than one partition. I also assume that you already have the installation media in good working condition. For those of you in the BYU-I Linux Users Group (LUG), I am willing to make copies of the discs if you provide the media or discuss some sort of compensation if you want me to provide the media.

BACKUP ALL IMPORTANT DATA BEFORE PROCEEDING

We all hate losing the projects that we've slaved over for weeks and months. Take the proper precautions to backup anything you wouldn't like to lose before installing any flavor of Linux. That's not to say that you will lose everything, but it's not unheard of to wipe out all data from your drive while attempting to install Linux. With that warning out of the way, let's get started!!!

Defragment Your Hard Drive

If you have a secondary drive which you plan to dedicate to Linux, this step is not necessary. However, if you plan to install Linux on the same drive as your Windows installation, I would suggest defragmenting your drive prior to repartitioning your drive. In order to defragment your hard drive in Windows XP, open your Start menu and open the Control Panel. Once here, descend into Administrative Tools and run Computer Management. This utility is quite handy. On the left side of the Computer Management window, you should see a tree of options. Under Storage you will see the Disk Defragmenter. Simply click the Defragment button, and the program will begin optimizing your files. Defragmenting your hard drive basically puts each of your files into one piece instead of scattered across the drive (as they tend to be written). Defragmentation is a good process to run on a regular basis. Once again, this step is not necessary to the installation of Linux, but it is a good practice.

Begin The Installation

Once you're done backing up your files and defragmenting your hard drive, insert the first SuSE Linux Enterprise Desktop 10 CD/DVD into your CD/DVD drive and reboot your computer. You should be presented with a fancy blue welcome screen, but if you see the Windows boot screen, you'll have to change the settings in your BIOS to enable you to boot from your CD/DVD drive. That process will vary from machine to machine, so I won't even try to explain how to do it. Once you see the welcome screen, you are presented with several boot options:

  • Boot from Hard Disk
  • Installation
  • Installation--ACPI Disabled
  • Installation--Local APIC Disabled
  • Installation--Safe Settings
  • Rescue System
  • Memory Test

We're going to go with the first Installation option. In my experience, starting with SuSE Linux 10.1, I haven't had any issues at all getting Linux installed. Most people shouldn't have problems booting into the installation program, but if you do, try the other Installation options. Once we begin the installation process, the bootloader will load the Linux kernel into memory and begin booting the SuSE Linux Enterprise Desktop installation utility. It will probe several devices to make the installation usable, after which you are presented with a language selection menu. Choose the language of your preference. Next you will be asked to accept the License Agreement, which I would recommend reading (with any product, not just SLED). If you accept, check the "Yes, I Agree to the License Agreement" option box and hit "Next." If you don't accept the agreement, this is the end of the road--your installation process will end.

Once we accept the License Agreement, a few more devices are probed and we're asked what kind of installation we'll be doing. With the assumptions I've made for this tutorial, we will proceed with a New Installation. If you have the "extras" CD, you can check the "Include Add-On Products from Separate Media" checkbox. You'll then be asked to insert the disc so that a catalog of available applications can be made. However, I'll assume that we all just have the required media. Click "Next" to create a catalog of the software available.

Now we're presented with a Clock and Time Zone screen. Choose the appropriate options for your situation and click next.

Installation Settings

Once we have set our clock and time zone, we are shown an overview of the current installation settings. I personally prefer to see all of the details, so I am going to click on the Expert tab. I don't like the predefined partitioning scheme, so I am going to change that.

Partition Your Drive

Partitioning a hard drive basically allows you to split up that brand new 500GB SATA-II drive you bought into smaller "virtual hard drives." I like to partition my hard drive because it allows me to manage my files easier, and I don't have to worry about losing ALL of my data if one of the partitions needs to be reformatted. Each partition can have a different file system on it, which allows us to run a Windows file system (NTFS) and a linux file system (ext2/3 and reiserfs are the two main ones, at least for workstations) on the same physical hard drive.

This is the first time I will entrust all of the data on my hard drive to a Linux installation partitioning utility in a very long time. We're talking about 7 years... However, for the sake of others, I am willing to put it to the test to see if SuSE will not wipe my drive when I try to resize the Windows partition. I usually use a utility such as Partition Magic to resize and create new partitions.

To change my partitioning scheme, I click on the "Partitioning" subtitle on the Expert tab in the Installation Settings section. I want to base my partition setup on the default proposal, so I select the second option "Base Partition Setup on This Proposal" and hit next. This part could be a bit hairy if you've never partitioned a drive before. I want to be able to share files between Windows and Linux, so I am going to create a small ~20GB partition which I will format to be FAT32, a format readable and writable in both Windows and Linux.

First, I must resize my Linux partitions. I don't need my home partition to be 22GB, so I'm going to resize that one to be 5GB. To do that, I select the partition with /home listed as it's Mount point and click the "Resize" button at the bottom of the screen. The window that appears shows a graphical representation of the changes we make. All I need do is enter "5" into the "Space Free (GB)" box or move the slider to the right spot and click "OK". Now I'm left with 17GB to share between Windows and Linux. To create this new partition, I click on the "Create" button at the bottom.

The new partition window asks me what type of format I wish to have on the new partition--I want to select FAT. I want to have this partition listed in a place that makes sense to me, so I'm going to change the "Mount Point" field to /windows/share and click OK. I think I'm now satisfied with the partitioning scheme, so I click "Finish" to return back to the Installation Settings screen.

Partitioning Pointers

Let me share some pointers for partitioning schemes. Traditional Linux installations would ask for a partition twice as big as the amount of RAM you have in your machine. This is for the swap, which is synonymous with virtual memory in Windows lingo. That means that if you have 512MB of RAM, your swap partition should be at least 1024MB (1GB). Likewise, if you have 1GB of RAM, your swap partition should be at least 2048MB (2GB). In my opinion, the average Linux desktop does not require more than 512MB for a swap partition. I may be mistaken, but I think the "double your RAM" rule became somewhat obsolete for desktop workstations with the advent of 2Ghz+ processors with 1GB+ of RAM. It could just be me, but I've never even filled 256MB of swap. Just something to consider while partitioning your drive.

If you plan on experimenting with several distros of Linux without wiping other installations of Linux, I would recommend a partition dedicated to your /home folder. This way, you are able to keep your personal settings across most if not all distros. I've found it useful on countless occasions.

Software Selection

One thing I really like about SLED is the ease of package selection. Their default package selection will suit most people just fine. However, I have developed my own tastes for how I like my Linux, so I am going to customize the package selection a bit. To do that, I click on the "Software" heading in the Expert tab of Installation Settings.

I personally prefer KDE to GNOME as my window manager. So I am going to deselect GNOME from the Desktops category, but not so the "Do Not Enter" symbol shows up where there once was a check. I want to click the checkbox until I see a white box (no checkmark). I'm not sure if this is required, but usually different environments will require libraries from other environments in order for certain programs to run. I suspect that the Do Not Enter sign means that nothing for GNOME will be installed, but this is not fact--it's simply a notion of mine. Now I want to put a check in the checkbox next to KDE. Being a nerd, I want to have my compilers around, so I will also select that option.

According to the disk usage graphs in the bottom right of the screen, I'm only going to be installing about 1.9GB of software. That's interesting because I downloaded a whole DVD... If anyone wants to see what other software is available, you can click the Details button below the software category list. This might scare a few off, but it's all quite simple. If you want to see more categories to choose from, select "Package Groups" from the Filter list in the top left. This is where you can explore all of your software options available on your installation media. I am going to leave that sort of customization until after I'm all installed and running.

Once you're done selecting the packages you wish to have installed, click Accept from the bottom right. You will probably encounter a few more license agreements at this point. These are for non-open-source applications (Adobe Acrobat Reader, Macromedia Flash plug-in, etc) included with SLED. I recommend reading and accepting each license agreement. Now I am presented with the same Expert tab in the Installation Settings stage. Now we're ready to proceed, so click Accept in the bottom right again. We're asked to confirm that we want to install Linux, with a warning that certain parts of your hard drive will be formatted, thus erasing any data that were there before. If you're ready, click Install, sit back, and enjoy.

Installing Everything

At this point your partitions will be resized/formatted and the appropriate files will be installed. This process can take anywhere from 20 minutes to 2 hours or more, depending on the packages you selected and the speed of your system. You might be interested in seeing what exactly is being installed on your system at this point. If so, you can click the Details tab and see each package being installed. Apparently I chose some other packages along the way or something, because now it says that I'm installing about 2.5GB of software and that this segment should take about 30 minutes.

Once all of the files are copied, the installation settings will be saved to the hard drive and your system will reboot for the first time in your brand new SLED. At this point, you shouldn't remove your installation media, as it is required in the following steps.

The Initial Boot And Final Settings

When we boot up our SLED for the first time after installation, we are asked to provide a hostname to identify our machine on the network. When you have set the hostname and domain name as you want them, click next. Now we're asked to set the root password. Make sure this password is one that you'll not forget, but at the same time make sure that it's not easy to guess. If someone gets root access to your machine, there's no end to what they can do.

Network Configuration

This is another section that is mostly correct, but a few settings are not the way I would like them to be. For example, my ssh port is listed as disabled under the Firewall heading. To enable it, just click the word "blocked"--it will change to "open". The rest of the settings look fine for now. If you have any customizations to be made, go ahead and make them. I'll wait.

When we're ready to move on, click next. At this point, our network configuration is saved. Next we're asked if we wish to try out our Internet connection. Do as you please. I usually skip this step, but for your sake, I will try out my connection. When we test, it tries to download the latest changelogs. If your connection works, you will see "Success" in the Result field. Click next.

User Authentication Method

Most home users won't have their own LDAP server or Windows Domain setup, so I won't go into how these are to be set up. Let's just go with Local authentication for now, the default option. Click next.

New Local User

This is when we create our very own user account. This set is essential. DO NOT EVER RUN EVERYDAY APPLICATIONS AS ROOT. There are serious security implications involved if you choose to login and perform your daily tasks as the root, or all-powerful administrator, user in Linux. It's much easier to just create an "unprivileged" user and do your regular business with that account. Only login as root when you need to perform system maintenance or install something. When you're done with those tasks, logout of the root environment immediately. Trust me.

Anyway, back to our installation. Go ahead and create your user. You may or may not want to check the checkbox to receive system mail. System mail includes certain security breaches on most distributions. If you don't wish to have to enter your password in order to use your computer, click the automatic login checkbox. If you wish to add more than one user at this time, you can click on the User Management button. The process is pretty much the same as it is to add the first unprivileged user. Click next when you're ready to proceed.

Now our system configuration is saved again (this seems to happen all the time in SuSE... it gets rather annoying in my opinion). After our settings are saved, we are presented with the release notes (which may have been more useful had they been displayed during the file copy process, but whatever). Read them if you wish. Click next when you're ready to proceed.

Hardware Configuration

Now this is one of the selling points for me with SuSE. I have a 17" widescreen (1680x1050 max resolution) for my laptop. There weren't many distros for a while that could handle the resolution out of the box. Fedora Core 5 was the first that I tried that handled it without any manual configuration, and SuSE was the second. I'm pretty happy with the configuration listed here, so click next when you are too. Once again, the settings will be saved (seems like saving settings in SuSE is as bad as rebooting in Windows...).

If you have several similar machines, you can save your installation configuration by checking the "Clone This System for Autoyast" checkbox. If you choose this, the system will determine what settings exactly were used for installation and create a file somewhere that you can use in later installations. When this is done, or when you click finish if you don't want to clone, a login screen will appear.

First Login

When you see this login screen, enter the username and password that you created for the unprivileged user. You'll see a fancy loading screen while your profile is being created for the first time.

Now, you may or may not have noticed, but I wrote this article as I installed SLED. I want to watch a movie now, so subsequent configuration (wireless, 3D acceleration, etc) will take place later. I hope this is good enough for the time being.