How I Have A Mobile & Desktop Site With Django

Part of the latest version of my site included the deployment of a mobile-friendly site. Up until recently, I hadn't even attempted to create a mobile site because I thought it would take more time than it was worth. I wanted something beyond just using CSS to hide certain elements on the page. I wanted to be able to break down the content of my site into its most basic pieces and only include what was necessary. Also, I wanted to figure it out on my own (instead of reusing wheels other people had invented before me--horrible, I know).

With these requirements, I was afraid it would require more resources than I could spare on my shared Web host. My initial impression was that I would have to leverage the django.contrib.sites framework in a fashion that would essentially require two distinct instances of my site running in RAM. Despite these feelings, I decided to embark on a mission to create a mobile-friendly site while still offering a full desktop-friendly site. It was surprisingly simple. This may not be the best way to do it, but it sure works for me, and I'm very satisfied. So satisfied, in fact, that I am going to share my solution with all of my Django-loving friends.

The first step is to add a couple of new settings to your settings.py file:

import os
DIRNAME = os.path.abspath(os.path.dirname(__file__))

TEMPLATE_DIRS = (
    os.path.join(DIRNAME, 'templates'),
)

MOBILE_TEMPLATE_DIRS = (
    os.path.join(DIRNAME, 'templates', 'mobile'),
)
DESKTOP_TEMPLATE_DIRS = (
    os.path.join(DIRNAME, 'templates', 'desktop'),
)

For those of you not used to seeing that os.path.join stuff, it's just a (very efficient) way to make your Django project more portable between different computers and even operating systems. The new variables are MOBILE_TEMPLATE_DIRS and DESKTOP_TEMPLATE_DIRS, and their respective meanings should be fairly obvious. Basically, this tells Django that it can look for templates in your_django_project/templates, your_django_project/templates/mobile, and your_django_project/templates/desktop.

Next, we need to install a middleware that takes care of determining which directory Django should pay attention to when rendering pages, between mobile and desktop. You can put this into your_django_project/middleware.py:

from django.conf import settings

class MobileTemplatesMiddleware(object):
    """Determines which set of templates to use for a mobile site"""

    ORIG_TEMPLATE_DIRS = settings.TEMPLATE_DIRS

    def process_request(self, request):
        # sets are used here, you can use other logic if you have an older version of Python
        MOBILE_SUBDOMAINS = set(['m', 'mobile'])
        domain = set(request.META.get('HTTP_HOST', '').split('.'))

        if len(MOBILE_SUBDOMAINS & domain):
            settings.TEMPLATE_DIRS = settings.MOBILE_TEMPLATE_DIRS + self.ORIG_TEMPLATE_DIRS
        else:
            settings.TEMPLATE_DIRS = settings.DESKTOP_TEMPLATE_DIRS + self.ORIG_TEMPLATE_DIRS

Now you need to install the new middleware. Back in your settings.py, find the MIDDLEWARE_CLASSES variable, and insert a line like the following:

'your_django_project.middleware.MobileTemplatesMiddleware',

Finally, if you already have a base.html template in your your_django_project/templates directory, rename it to something else, such as site_base.html. Now create two new directories: your_django_project/templates/mobile and your_django_project/templates/desktop. In both of those directories, create a new base.html template that extends site_base.html.

Example site_base.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>{% block base_title %}Code Koala{% endblock %} - {% block title %}Welcome{% endblock %}</title>
<link href="{{ MEDIA_URL }}css/common.css" rel="stylesheet" type="text/css" media="screen" />
{% block extra-head %}{% endblock %}

</head>
<body>
<div id="page-wrapper">
    {% block header %}
    <div id="logo">
        <h1><a href="/">Code Koala</a></h1>
    </div>
    <div id="header">
        <div id="menu">
            <ul>
                <li><a href="/" class="first">Home</a></li>
                <li><a href="/blog/">Blog</a></li>
                <li><a href="/about/">About</a></li>
                <li><a href="/contact/">Contact</a></li>
            </ul>
        </div>
    </div>
    {% endblock %}
    <div id="page">
        <div id="content">
            {% block content %}{% endblock %}
        </div>
        <div id="sidebar">
            {% block sidebar %}
            Stuff
            {% endblock %}
        </div>
    </div>
    <div id="footer">
        {% block footer %}
        Footer stuff
        {% endblock %}
    </div>
</div>
</body>
</html>

Example desktop/base.html

{% extends 'site_base.html' %}

{% block extra-head %}
<!-- stylesheets -->
<link href="{{ MEDIA_URL }}css/desktop.css" rel="stylesheet" type="text/css" media="screen" />

<!-- JavaScripts -->
<script type="text/javascript" src="{{ MEDIA_URL }}js/jquery.js"></script>
{% endblock %}

Example mobile/base.html

{% extends 'site_base.html' %}

{% block extra-head %}
<!-- stylesheets -->
<link href="{{ MEDIA_URL }}css/mobile.css" rel="stylesheet" type="text/css" media="screen" />
{% endblock %}

{% block sidebar %}{% endblock %}

Please forgive me if the HTML or whatever is incorrect--I butchered the actual templates I use on Code Koala for the examples. There are some neat things you can do in your pages to make them more mobile friendly, such as including something like <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-scale=1.0; user-scalable=0;" /> in your <head> tag. This is supposed to tell your visitor's browser to not scale your pages to make it all fit on the screen. You can find a lot of other such tips elsewhere on the interwebs, and I'm sure they'll be better explained elsewhere too. You can also find scripts to handle redirecting your visitors to a mobile site and whatnot. Google is your friend.

As for the Django side of things, that should be just about it. If you have other templates you want to customize based on the version of your site that visitors are viewing, simply add those templates to the your_django_project/templates/mobile or your_django_project/templates/desktop directories as necessary. For example, if you have an application called blog, and you want to override the entry_detail.html template for the mobile site, so it doesn't pull in a bunch of unnecessary information to save bandwidth, you could save your modified copy in your_django_project/templates/mobile/blog/entry_detail.html.

With this setup, all you have to do is point your main domain and a subdomain such as m.yourdomain.com to the same Django application, and the middleware will take care of the "heavy lifting". No need for an additional instance of your Django project just for the mobile site. No hackish hiding of elements using CSS. If you find this article useful and decide to use these techniques on your site, please let me know how it works in your environment and if you ran into any snags so I can update the information!

Auto-Generating Documentation Using Mercurial, ReST, and Sphinx

I often find myself taking notes about various aspects of my job that I feel I would forget as soon as I moved onto another project. I've gotten into the habit of taking my notes using reStructured Text, which shouldn't come as any surprise to any of my regular visitors. On several occasions, I had some of the other guys in the company ask me for some clarification on some things I had taken notes on. Lucky for me, I had taken some nice notes!

However, these individuals probably wouldn't appreciate reading ReST markup as much as I do, so I decided to do something nice for them. I setup Sphinx to prettify my documentation. I then wrote a small Web server using Python, so people within the company network could access the latest version of my notes without much hassle.

Just like I take notes to remind myself of stuff at work, I want to do that again for this automated ReST->HTML magic--I want to be able to do this in the future! I figured I would make my notes even more public this time, so you all can enjoy similar bliss.

Platform Dependence

I am writing this article with UNIX-like operating systems in mind. Please forgive me if you're a Windows user and some of this is not consistent with what you're seeing. Perhaps one day I'll try to set this sort of thing up on Windows.

Installing Sphinx

The first step that we want to take is installing Sphinx. This is the project that Python itself uses to generate its online documentation. It's pretty dang awesome. Feel free to skip this section if you have already installed Sphinx.

Depending on your environment of choice, you may or may not have a package manager that offers python-sphinx or something along those lines. I personally prefer to install it using pip or easy_install:

$ sudo pip install sphinx

Running that command will likely respond with a bunch of output about downloading Sphinx and various dependencies. When I ran it in my sandbox VM, I saw it install the following packages:

  • pygments
  • jinja2
  • docutils
  • sphinx

It should be a pretty speedy installation.

Installing Mercurial

We'll be using Mercurial to keep track of changes to our ReST documentation. Mercurial is a distributed version control system that is built using Python. It's wonderful! Just like with Sphinx, if you have already installed Mercurial, feel free to skip to the next section.

I personally prefer to install Mercurial using pip or easy_install--it's usually more up-to-date than what you would have in your package repositories. To do that, simply run a command such as the following:

$ sudo pip install mercurial

This will go out and download and install the latest stable Mercurial. You may need python-dev or something like that for your platform in order for that command to work. However, if you're on Windows, I highly recommend TortoiseHg. The installer for TortoiseHg will install a graphical Mercurial client along with the command line tools.

Create A Repository

Now let's create a brand new Mercurial repository to house our notes/documentation. Open a terminal/console/command prompt to the location of your choice on your computer and execute the following commands:

$ hg init mydox
$ cd mydox

Configure Sphinx

The next step is to configure Sphinx for our project. Sphinx makes this very simple:

$ sphinx-quickstart

This is a wizard that will walk you through the configuration process for your project. It's pretty safe to accept the defaults, in my opinion. Here's the output of my wizard:

$ sphinx-quickstart
Welcome to the Sphinx quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/N) [n]: y

Inside the root directory, two more directories will be created; "_templates"
for custom HTML templates and "_static" for custom stylesheets and other static
files. You can enter another prefix (such as ".") to replace the underscore.
> Name prefix for templates and static dir [_]:

The project name will occur in several places in the built documentation.
> Project name: My Dox
> Author name(s): Josh VanderLinden

Sphinx has the notion of a "version" and a "release" for the
software. Each version can have multiple releases. For example, for
Python the version is something like 2.5 or 3.0, while the release is
something like 2.5.1 or 3.0a1.  If you don't need this dual structure,
just set both to the same value.
> Project version: 0.0.1
> Project release [0.0.1]:

The file name suffix for source files. Commonly, this is either ".txt"
or ".rst".  Only files with this suffix are considered documents.
> Source file suffix [.rst]:

One document is special in that it is considered the top node of the
"contents tree", that is, it is the root of the hierarchical structure
of the documents. Normally, this is "index", but if your "index"
document is a custom template, you can also set this to another filename.
> Name of your master document (without suffix) [index]:

Please indicate if you want to use one of the following Sphinx extensions:
> autodoc: automatically insert docstrings from modules (y/N) [n]:
> doctest: automatically test code snippets in doctest blocks (y/N) [n]:
> intersphinx: link between Sphinx documentation of different projects (y/N) [n]:
> todo: write "todo" entries that can be shown or hidden on build (y/N) [n]:
> coverage: checks for documentation coverage (y/N) [n]:
> pngmath: include math, rendered as PNG images (y/N) [n]:
> jsmath: include math, rendered in the browser by JSMath (y/N) [n]:
> ifconfig: conditional inclusion of content based on config values (y/N) [n]:

A Makefile and a Windows command file can be generated for you so that you
only have to run e.g. `make html' instead of invoking sphinx-build
directly.
> Create Makefile? (Y/n) [y]:
> Create Windows command file? (Y/n) [y]: n

Finished: An initial directory structure has been created.

You should now populate your master file ./source/index.rst and create other documentation
source files. Use the Makefile to build the docs, like so:
   make builder
where "builder" is one of the supported builders, e.g. html, latex or linkcheck.

If you followed the same steps I did (I separated the source and build directories), you should see three new files in your mydox repository:

  • build/
  • Makefile
  • source/

We'll do our work in the source directory.

Get Some ReST

Now is the time when we start writing some ReST that we want to turn into HTML using Sphinx. Open some file, like first_doc.rst and put some ReST in it. If nothing comes to mind, or you're not familiar with ReST syntax, try the following:

=========================
This Is My First Document
=========================

Yes, this is my first document.  It's lame.  Deal with it.

Save the file (keep in mind that it should be within the source directory if you used the same settings I did). Now it's time to add it to the list of files that Mercurial will pay attention to. While we're at it, let's add the other files that were created by the Sphinx configuration wizard:

$ hg add
adding ../Makefile
adding conf.py
adding first_doc.rst
adding index.rst
$ hg st
A Makefile
A source/conf.py
A source/first_doc.py
A source/index.rst

Don't worry that we don't see all of the directories in the output of hg st--Mercurial tracks files, not directories.

Automate HTML-ization

Here comes the magic in automating the conversion from ReST to HTML: Mercurial hooks. We will use the precommit hook to fire off a command that tells Sphinx to translate our ReST markup into HTML.

Edit your mydox/.hg/hgrc file. If the file does not yet exist, go ahead and create it. Add the following content to it:

[hooks]
precommit.sphinxify = ~/bin/sphinxify_docs.sh

I've opted to call a Bash script instead of using an inline Python call. Now let's create the Bash script, ~/bin/sphinxify_docs.sh:

#!/bin/bash
cd $HOME/mydox
sphinx-build source/ docs/

Notice that I used the $HOME environment variable. This means that I created the mydox directory at /home/myusername/mydox. Adjust that line according to your setup. You'll probably also want to make that script executable:

$ chmod +x ~/bin/sphinxify_docs.sh

Three, Two, One...

You should now be at a stage where you can safely commit changes to your repository and have Sphinx build your HTML documentation. Execute the following command somewhere under your mydox repository:

$ hg ci -m "Initial commit"

If your setup is anything like mine, you should see some output similar to this:

$ hg ci -m "Initial commit"
Making output directory...
Running Sphinx v0.6.4
No builder selected, using default: html
loading pickled environment... not found
building [html]: targets for 2 source files that are out of date
updating environment: 2 added, 0 changed, 0 removed
reading sources... [100%] index
looking for now-outdated files... none found
pickling environment... done
checking consistency... /home/jvanderlinden/mydox/source/first_doc.rst:: WARNING: document isn't included in any toctree
done
preparing documents... done
writing output... [100%] index
writing additional files... genindex search
copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded, 1 warning.
$ hg st
? docs/.buildinfo
? docs/.doctrees/environment.pickle
? docs/.doctrees/first_doc.doctree
? docs/.doctrees/index.doctree
? docs/_sources/first_doc.txt
? docs/_sources/index.txt
? docs/_static/basic.css
? docs/_static/default.css
? docs/_static/doctools.js
? docs/_static/file.png
? docs/_static/jquery.js
? docs/_static/minus.png
? docs/_static/plus.png
? docs/_static/pygments.css
? docs/_static/searchtools.js
? docs/first_doc.html
? docs/genindex.html
? docs/index.html
? docs/objects.inv
? docs/search.html
? docs/searchindex.js

If you see something like that, you're in good shape. Go ahead and take a look at your new mydox/docs/index.html file in the Web browser of your choosing.

Not very exciting, is it? Notice how your first_doc.rst doesn't appear anywhere on that page? That's because we didn't tell Sphinx to put it there. Let's do that now.

Customizing Things

Edit the mydox/source/index.rst file that was created during Sphinx configuration. In the section that starts with .. toctree::, let's tell Sphinx to include everything we ReST-ify:

.. toctree::
   :maxdepth: 2
   :glob:

   *

That should do it. Now, I don't know about you, but I don't really want to include the output HTML, images, CSS, JS, or anything in my documentation repository. It would just take up more space each time we change an .rst file. Let's tell Mercurial to not pay attention to the output HTML--it'll just be static and always up-to-date on our filesystem.

Create a new file called mydox/.hgignore. In this file, put the following content:

syntax: glob
docs/

Save the file, and you should now see something like the following when running hg st:

$ hg st
M source/index.rst
? .hgignore

Let's include the .hgignore file in the list of files that Mercurial will track:

$ hg add .hgignore
$ hg st
M source/index.rst
A .hgignore

Finally, let's commit one more time:

$ hg ci -m "Updating the index to include our .rst files"
Running Sphinx v0.6.4
No builder selected, using default: html
loading pickled environment... done
building [html]: targets for 1 source files that are out of date
updating environment: 0 added, 1 changed, 0 removed
reading sources... [100%] index
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
writing additional files... genindex search
copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded.

Tada!! The first_doc.rst should now appear on the index page.

Serving Your Documentation

Who seriously wants to have HTML files that are hard to get to? How can we make it easier to access those HTML files? Perhaps we can create a simple static file Web server? That might sound difficult, but it's really not--not when you have access to Python!

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from BaseHTTPServer import HTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler

def main():
    try:
        server = HTTPServer(('', 80), SimpleHTTPRequestHandler)
        server.serve_forever()
    except KeyboardInterrupt:
        server.socket.close()

if __name__ == '__main__':
    main()

I created this simple script and put it in my ~/bin/ directory, also making it executable. Once that's done, you can navigate to your mydox/docs/ directory and run the script. Since I called the script webserver.py, I just do this:

$ cd ~/mydox/docs
$ sudo webserver.py

This makes it possible for you to visit http://localhost/ on your own computer, or to use your computer's IP in place of localhost to access your documentation from a different computer on your network. Pretty slick, if you ask me.

I suppose there's more I could add, but that's all I have time for tonight. Enjoy!

Syntax Highlighting, ReST, Pygments, and Django

Some of you regulars out there may have noticed an interesting change in the presentation of some of my articles: source code highlighting. I've been interested in doing this for quite some time, I just never really got around to implementing it until last night.

I found this implementation process to be a bit more complicatd than I had anticipated. For my own benefit as well as for anyone else who wants to do the same thing, I thought I'd document my findings in a thorough article for how to add syntax highlighting to an existing Django- and reStructuredText-powered Web site.

The power behind the syntax highlighting is:

Python is a huge player in this feature because reStructuredText (ReST) was built for Python, Pygments is the source highlighter (written in Python), and Django is written in Python (and my site is powered by Django). Some of you may recall that I converted all of my articles to ReST not too long ago because it suited my needs better than Textile, my previous markup processor. At the time, I was not aware that the conversion to ReST would make it all the easier for me to implement the syntax highlighting, but last night I figured out that that conversion probably saved me a lot of frustration. Cascading Stylesheets (CSS) are responsible for making the source code actually look good, while Pygments takes care of assigning classes to various parts of the designated source code and generating the CSS.

So, the first set of requirements, which I will not document in this article, are that you already have a Django site up and running and that you're familiar with ReST syntax. If you have the django.contrib.flatpages application installed already, you can type up some ReST documents there and apply the concepts discussed in this article.

Next, you should ensure that you have Pygments installed. There are a variety of ways to install this. Perhaps the easiest and most platform-independent method is to use easy_install:

$ easy_install pygments

This command should work essentially the same on Windows, Linux, and Macintosh computers. If you don't have it installed, you can get it from its website. If you're using a Debian-based distribution of Linux, such as Ubuntu, you could do something like this:

$ sudo apt-get install python-pygments

...and it should take care of downloading and installing Pygments. Alternatively, you can download it straight from the PyPI page and install it manually.

Now we need to install the Pygments ReST directive. A ReST directive is basically like a special command to the ReST processor. I think this part was the most difficult aspect of the implementation, simply because I didn't know where to find the Pygments directive or how to write my own. Eventually, I ended up downloading the Pygments-1.0.tar.gz file from PyPI, opening the Pygments-1.0/external/rst-directive.py file from the archive, and copying the stuff in there into a new file within my site.

For my own purposes, I made some small adjustments to the directive over what come with the Pygments distribution. I think it would save us all a lot of hassle if I just copied and pasted the directive, as I currently have it, so you can see it first-hand.

"""
    The Pygments reStructuredText directive
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    This fragment is a Docutils_ 0.4 directive that renders source code
    (to HTML only, currently) via Pygments.

    To use it, adjust the options below and copy the code into a module
    that you import on initialization.  The code then automatically
    registers a ``code-block`` directive that you can use instead of
    normal code blocks like this::

    .. code:: python

            My code goes here.

    If you want to have different code styles, e.g. one with line numbers
    and one without, add formatters with their names in the VARIANTS dict
    below.  You can invoke them instead of the DEFAULT one by using a
    directive option::

    .. code:: python
       :number-lines:

            My code goes here.

    Look at the `directive documentation`_ to get all the gory details.

    .. _Docutils: http://docutils.sf.net/
    .. _directive documentation:
       http://docutils.sourceforge.net/docs/howto/rst-directives.html

    :copyright: 2007 by Georg Brandl.
    :license: BSD, see LICENSE for more details.
"""

# Options
# ~~~~~~~

# Set to True if you want inline CSS styles instead of classes
INLINESTYLES = False

from pygments.formatters import HtmlFormatter

# The default formatter
DEFAULT = HtmlFormatter(noclasses=INLINESTYLES)

# Add name -> formatter pairs for every variant you want to use
VARIANTS = {
    'linenos': HtmlFormatter(noclasses=INLINESTYLES, linenos=True),
}


from docutils import nodes
from docutils.parsers.rst import directives

from pygments import highlight
from pygments.lexers import get_lexer_by_name, TextLexer

def pygments_directive(name, arguments, options, content, lineno,
                       content_offset, block_text, state, state_machine):
    try:
        lexer = get_lexer_by_name(arguments[0])
    except ValueError:
        # no lexer found - use the text one instead of an exception
        lexer = TextLexer()
    # take an arbitrary option if more than one is given
    formatter = options and VARIANTS[options.keys()[0]] or DEFAULT
    parsed = highlight(u'\n'.join(content), lexer, formatter)
    parsed = '<div class="codeblock">%s</div>' % parsed
    return [nodes.raw('', parsed, format='html')]

pygments_directive.arguments = (1, 0, 1)
pygments_directive.content = 1
pygments_directive.options = dict([(key, directives.flag) for key in VARIANTS])

directives.register_directive('code-block', pygments_directive)

I won't explain what that code means, because, quite frankly, I'm still a little hazy on the inner workings of ReST directives myself. Suffice it to say that this snippet allows you to easily highlight blocks of code on ReST-powered pages.

The question now is: where do I put this snippet? As far as I'm aware, this code can be located anywhere so long as it is loaded at one point or another before you start your ReST processing. For the sake of simplicity, I just stuffed it in the __init__.py file of my Django site. This is the __init__.py file that lives in the same directory as manage.py and settings.py. Putting it in that file just makes sure it's loaded each time you start your Django site.

To make Pygments highlight a block of code, all you need to do is something like this:

.. code:: python

    print 'Hello world!'

...which would look like...

print 'Hello world!'

If you have a longer block of code and would like line numbers, use the :number-lines: option:

.. code:: python
    :number-lines:

    for i in range(100):
        print i

...which should look like this...

for i in range(100):
    print i

That's all fine and dandy, but it probably doesn't look like the code is highlighted at all just yet (on your site, not mine). It's just been marked up by Pygments to have some pretty CSS styles applied to it. But how do you know which styles mean what?

Luckily enough, Pygments takes care of generating the CSS files for you as well. There are several attractive styles that come with Pygments. I would recommend going to the Pygments demo to see which one suits you best. You can also roll your own styles, but I haven't braved that yet so I'll leave that for another day.

Once you choose a style (I chose native for Code Koala), you can run the following commands:

$ pygmentize -S native -f html > native.css
$ cp native.css /path/to/site/media/css

(obviously, you'd want to replace native with the name of the style you like the most) Finally, add a line to your HTML templates to load the newly created CSS file. In my case, it's something like this:

<link rel="stylesheet" type="text/css" href="/static/styles/native.css" />

Now you should be able to see nicely-formatted source code on your Web pages (assuming you've already got ReST processing your content).

If you haven't been using ReST to generate nicely-formatted pages, you should make sure a couple of things are in place. First, you must have the django.contrib.markup application installed. Second, your templates should be setup to process ReST markup into HTML. Here's a sample templates/flatpages/default.html:

{% extends 'base.html' %}
{% load markup %}

{% block title %}{{ flatpage.title }}{% endblock %}

{% block content %}
<h2>{{ flatpage.title }}</h2>

{{ flatpage.content|restructuredtext }}
{% endblock %}

So that short template should allow you to use ReST markup for your flatpages, and it should also take care of the magic behind the .. code:: python directive.

I should also note that Pygments can handle a TON of languages. Check out the Pygments demo for a list of languages it knows how to highlight.

I think that about does it. Hopefully this article will help some other poor chap who is currently in the same situation as I was last night, and hopefully it will save you a lot more time than it took me to figure out all this junk. If it looks like I've missed something, or maybe that something needs further clarification, please comment and I'll see what I can do.

Pendulum Screenshots!

For anyone who's interested, you can now see what Pendulum can look like out of the box (with the addition of a little CSS). The color scheme is kinda fugly, but that's okay because it's not a real site!

If you want to see the screenshots, head on over to the project page.

Project Release: Seasonal Stylesheets

The other day at work I was involved in a humorous discussion about having our organization's Web site change colors depending on what day of the year it was. We threw around all sorts of fun ideas, knowing full well that it would never happen for our organization. It would be too unprofessional.

That night my allergies were bothering me to the point where I couldn't sleep, so I decided to see what I could do about making our discussion more possible, at least for others who can take a little more creative license than us. By morning, I had a working application that could effectively change the colors on a Web page depending on the date.

Today I released the source code on Google Code, hoping that someone more creative than me might take it and experiment to make something both attractive and useful.

You can learn more at the project's homepage: http://code.google.com/p/django-seasonal-stylesheets/

Installing Django on Shared Hosting (Site5)

This article is a related to my previously posted article about installing Django, an advanced Web framework for perfectionists, on your own computer. Now we will learn how to install Django on a shared hosting account, using Site5 and fastcgi as an example. Depending on your host, you may or may not have to request additional privileges from the support team in order to execute some of these commands.

Note: Django requires at least Python 2.3. Newer versions of Python are preferred.

Note: This HOWTO assumes familiarity with the UNIX/Linux command line.

Note: If the wget command doesn't work for you (as in you don't have permission to run it), you might try curl [url] -O instead. That's a -O as in upper-case o.

Install Python

Site5 (and many other shared hosting providers that offer SSH access) already has Python installed, but you will want to have your own copy so you can install various tools without affecting other users. So go ahead and download virtual python:

mkdir ~/downloads
cd ~/downloads
wget http://peak.telecommunity.com/dist/virtual-python.py

Virtual Python will make a local copy of the installed Python in your home directory. Now you want to make sure you execute this next command with the newest version of Python available on your host. For example, Site5 offers both Python 2.3.4 and Python 2.4.3. We want to use Python 2.4.3. To verify the version of your Python, execute the following command:

python -V

If that displays Python 2.3.x or anything earlier, try using python2.4 -V or python2.5 -V instead. Whichever command renders the most recent version of Python is the one you should use in place of python in the next command. Since python -V currently displays Python 2.4.3 on my Site5 sandbox, I will execute the following command:

python ~/downloads/virtual-python.py

Again, this is just making a local copy of the Python installation that you used to run the virtual-python.py script. Your local installation is likely in ~/lib/python2.4/ (version could vary).

Make Your Local Python Be Default

To reduce confusion and hassle, let's give our new local installation of Python precedence over the system-wide Python. To do that, open up your ~/.bashrc and make sure it contains a line similar to this:

export PATH=$HOME/bin:$PATH

If you're unfamiliar with UNIX-based text editors such as vi, here is what you would type to use vi to make the appropriate changes:

  • vi ~/.bashrc to edit the file
  • go to the end of the file by using the down arrow key or the j key
  • hit o (the letter) to tell vi you want to start typing stuff on the next line
  • type export PATH=$HOME/bin:$PATH
  • hit the escape key
  • type :x to save the changes and quit. Don't forget the : at the beginning. Alternatively, you can type :wq, which works exactly the same as :x.

Once you've made the appropriate changes to ~/.bashrc, you need to make those changes take effect in your current SSH session:

source ~/.bashrc

Now we should verify that our changes actually took place. Type the following command:

which python

If they output of that command is not something like ~/bin/python or /home/[your username]/bin/python, something probably didn't work. If that's the case, you can try again, or simply remember to use ~/bin/python instead of python throughout the rest of this HOWTO.

Install Python's setuptools

Now we should install Python's setuptools to make our lives easier down the road.

cd ~/downloads
wget http://peak.telecommunity.com/dist/ez_setup.py
python ez_setup.py

This gives us access to a script called easy_install, which makes it easy to install many useful Python tools. We will use this a bit later.

Download Django

Let's now download the most recent development version of Django. SSH into your account and execute the following commands (all commands shall be executed on your host).

svn co http://code.djangoproject.com/svn/django/trunk ~/downloads/django-trunk

Now we should make a symlink (or shortcut) to Django and put it somewhere on the Python Path. A sure-fire place is your ~/lib/python2.4/site-packages/ directory (again, that location could vary from host to host):

ln -s ~/downloads/django-trunk/django ~/lib/python2.4/site-packages
ln -s ~/downloads/django-trunk/django/bin/django-admin.py ~/bin

Now verify that Django is installed and working by executing the following command:

python -c "import django; print django.get_version()"

That command should return something like 1.0-final-SVN-8964. If you got something like that, you're good to move onto the next section. If, however, you get something more along the lines of...

Traceback (most recent call last):
    File "<string>", line 1, in ?
ImportError: No module named django

...then your Django installation didn't work. If this is the case, make sure that you have a ~/downloads/django-trunk/django directory, and also verify that ~/lib/python2.4/site-packages actually exists.

Installing Dependencies

In order for your Django projects to become useful, we need to install some other packages: PIL (Python Imaging Library, required if you want to use Django's ImageField), MySQL-python (a MySQL database driver for Python), and flup (a utility for fastcgi-powered sites).

easy_install -f http://www.pythonware.com/products/pil/ Imaging
easy_install mysql-python
easy_install flup

Sometimes, using easy_install to install PIL doesn't go over too well because of your (lack of) permissions. To circumvent this situation, you can always download the actual PIL source code and install it manually.

cd ~/downloads
wget http://effbot.org/downloads/Imaging-1.1.6.tar.gz
tar zxf Imaging-1.1.6.tar.gz
cd Imaging-1.1.6
ln -s ~/downloads/Imaging-1.1.6/PIL ~/lib/python2.4/site-packages

And to verify, you can try this command:

python -c "import PIL"

If that doesn't return anything, you're good to go. If it says something about "ImportError: No module named PIL", it didn't work. In that case, you have to come up with some other way of installing PIL.

Setting Up A Django Project

Let's attempt to setup a sample Django project.

mkdir -p ~/projects/django
cd ~/projects/django
django-admin.py startproject mysite
cd mysite
mkdir media templates

If that works, then you should be good to do the rest of your Django development on your server. If not, make sure that ~/downloads/django-trunk/django/bin/django-admin.py exists and that it has a functioning symlink (shortcut) in ~/bin. If not, you'll have to make adjustments according to your setup. Your directory structure should look something like:

  • projects
    • django
      • mysite
        • media
        • templates
        • __init__.py
        • manage.py
        • settings.py
        • urls.py

Making A Django Project Live

Now we need to make your Django project accessible from the Web. On Site5, I generally use either a subdomain or a brand new domain when setting up a Django project. If you plan on having other projects accessible on the same hosting account, I recommend you do the same. Let's assume you setup a subdomain such as mysite.mydomain.com. On Site5, you would go to ~/public_html/mysite for the next few commands. This could differ from host to host, so I won't go into much more detail than that.

Once you're in the proper place, you need to setup a few things: two symlinks, a django.fcgi, and a custom .htaccess file. Let's begin with the symlinks.

ln -s ~/projects/django/mysite/media ~/public_html/mysite/static
ln -s ~/lib/python2.4/site-packages/django/contrib/admin/media ~/public_html/mysite/media

This just makes it so you can have your media files (CSS, images, javascripts, etc) in a different location than in your public_html.

Now for the django.fcgi. This file is what tells the webserver to execute your Django project.

#!/home/[your username]/bin/python
import sys, os

# Add a custom Python path.
sys.path.insert(0, "/home/[your username]/projects/django")

# Switch to the directory of your project. (Optional.)
os.chdir("/home/[your username]/projects/django/mysite")

# Set the DJANGO_SETTINGS_MODULE environment variable.
os.environ['DJANGO_SETTINGS_MODULE'] = "mysite.settings"

from django.core.servers.fastcgi import runfastcgi
runfastcgi(method="threaded", daemonize="false")

And finally, the .htaccess file:

1
2
3
4
5
6
RewriteEngine On
RewriteBase /
RewriteRule ^(media/.*)$ - [L]
RewriteRule ^(static/.*)$ - [L]
RewriteCond %{REQUEST_URI} !(django.fcgi)
RewriteRule ^(.*)$ django.fcgi/$1 [L]

The .htaccess file makes it so that requests to http://mysite.mydomain.com/ are properly directed to your Django project. So, now you should have a directory structure that something that looks like this:

  • public_html
    • mysite
      • media
      • static
      • .htaccess
      • django.fcgi

If that looks good, go ahead and make the django.fcgi executable and non-writable by others:

chmod 755 ~/public_html/mysite/django.fcgi

After that, head over to http://mysite.mydomain.com/ (obviously, replace the mydomain accordingly). If you see a page that says you've successfully setup your Django site, you're good to go!

Afterthoughts

I've noticed that I need to "restart" my Django sites on Site5 any time I change the .py files. There are a couple methods of doing this. One includes killing off all of your python processes (killall ~/bin/python) and the other simply updates the timestamp on your django.fcgi (touch ~/public_html/mysite/django.fcgi). I find the former to be more destructive and unreliable than the latter. So, my advice is to use the touch method unless it doesn't work, in which case you can try the killall method.

Good luck!

django-clevercss v0.1

Today I launched another little side project. I call it django-clevercss. Really it's just a simple way to use CleverCSS-formatted stylesheets in Django sites.

At first glance, CleverCSS might not seem like the most useful thing ever, but I personally think it has potential. It is a more concise way to write CSS, and it also allows the use of variables (so you don't have to change 50 of the same hex color codes each time someone wants something a different shade of blue) and simple calculations within the stylesheet. You can also have a sort of "hierarchy" of elements so you don't have to repeat the same element name 30 times for simple styling.

Anyway, since I thought CleverCSS was so clever, I decided that I would make an effort to make the project more accessible for Django developers who agree with me.

This project gives you a way to create CleverCSS stylesheets in your database using the Django administration utility. Then you use a simple template tag to bring the CSS file into your Django templates. Put something like {% get_clever_css "Testing" %} in the href of a regular link tag and that's about it!

Assuming that you have a CleverCSS stylesheet in your database with the title "Testing", the project will do several things. First, it will see if the stylesheet has been parsed and saved to the filesystem. If it has, it will compare the last time the stylesheet on the filesystem was modified with the last modification time of the stylesheet in the database. If the stylesheet in the database is newer than the one on the filesystem, or the stylesheet has not yet been saved to the filesystem, the project will parse the CleverCSS into real, valid CSS and store it in a file on the filesystem. Then you end up with something like this in your template after Django is done with it:

<link rel="stylesheet" type="text/css" media="all" href="/media/clevercss/testing.css" />

For more information and installation instructions, check out the project homepage. Have fun!